Orthogonality and Domination in Unstable Theories
نویسنده
چکیده
In the rst part of the paper we study orthogonality, domination, weight, regular and minimal types in the contexts of rosy and super-rosy theories. Then we try to develop analogous theory for arbitrary dependent theories.
منابع مشابه
On Approximate Birkhoff-James Orthogonality and Approximate $ast$-orthogonality in $C^ast$-algebras
We offer a new definition of $varepsilon$-orthogonality in normed spaces, and we try to explain some properties of which. Also we introduce some types of $varepsilon$-orthogonality in an arbitrary $C^ast$-algebra $mathcal{A}$, as a Hilbert $C^ast$-module over itself, and investigate some of its properties in such spaces. We state some results relating range-kernel orthogonality in $C^*$-algebras.
متن کاملWeak versus Strong Domination in a Market with Indivisible Goods
The core of a market in indivisible goods can be defined in terms of strong domination or weak domination. The core defined by strong domination is always non-empty, but may contain points which are unstable in a dynamic sense. However, it is shown that there are always stable points in the core, and a characterization is obtained. The core defined by weak domination is always non-empty when th...
متن کاملOn (t, r) broadcast domination numbers of grids
The domination number of a graph G = (V,E) is the minimum cardinality of any subset S ⊂ V such that every vertex in V is in S or adjacent to an element of S. Finding the domination numbers of m by n grids was an open problem for nearly 30 years and was finally solved in 2011 by Goncalves, Pinlou, Rao, and Thomassé. Many variants of domination number on graphs, such as double domination number a...
متن کاملOrthogonality preserving mappings on inner product C* -modules
Suppose that A is a C^*-algebra. We consider the class of A-linear mappins between two inner product A-modules such that for each two orthogonal vectors in the domain space their values are orthogonal in the target space. In this paper, we intend to determine A-linear mappings that preserve orthogonality. For this purpose, suppose that E and F are two inner product A-modules and A+ is the set o...
متن کاملA characterization of orthogonality preserving operators
In this paper, we characterize the class of orthogonality preserving operators on an infinite-dimensional Hilbert space $H$ as scalar multiples of unitary operators between $H$ and some closed subspaces of $H$. We show that any circle (centered at the origin) is the spectrum of an orthogonality preserving operator. Also, we prove that every compact normal operator is a strongly orthogo...
متن کامل